Efficient Moving Mesh Technique Using Generalized Swapping

نویسنده

  • Frédéric Alauzet
چکیده

Three-dimensional real-life simulations are generally unsteady and involve moving geometries. Industries are currently still very far from performing such simulations on a daily basis, mainly due to the robustness of the moving mesh algorithm and their extensive computational cost. The proposed approach is a way to improve these two issues. This paper brings two new ideas. First, it demonstrates numerically that moving three-dimensional complex geometries with large displacements is feasible using only vertex displacements and mesh-connectivity changes. This is new and presents several advantages over usual techniques for which the number of vertices varies in time. Second, most of the CPU time spent to move the mesh is due to the resolution of the mesh deformation algorithm to propagate the body displacement inside the volume. Thanks to the use of advanced meshing operators to optimize the mesh, we can reduce drastically the number of such resolutions thus impacting favorably the CPU time. The efficiency of this new methodology is illustrated on numerous 3D problems involving large displacements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving Mesh Non-standard Finite Difference Method for Non-linear Heat Transfer in a Thin Finite Rod

In this paper, a moving mesh technique and a non-standard finite difference method are combined, and a moving mesh non-standard finite difference (MMNSFD) method is developed to solve an initial boundary value problem involving a quartic nonlinearity that arises in heat transfer with thermal radiation. In this method, the moving spatial grid is obtained by a simple geometric adaptive algorithm ...

متن کامل

Bit Swapping Linear Feedback Shift Register For Low Power Application Using 130nm Complementary Metal Oxide Semiconductor Technology (TECHNICAL NOTE)

Bit swapping linear feedback shift register (BS-LFSR) is employed in a conventional linear feedback shirt register (LFSR) to reduce its power dissipation and enhance its performance. In this paper, an enhanced BS-LFSR for low power application is proposed. To achieve low power dissipation, the proposed BS-LFSR introduced the stacking technique to reduce leakage current. In addition, three diffe...

متن کامل

Compressible Fluid-flow Ale Formulation on Changing Topology Meshes for Aeroelastic Simulations

The analysis of unsteady fluid flows on moving domains is a very complex task, that may be often tackled using domain remeshing techniques. In the present paper a novel mesh movement strategy is presented. It is based on the blending of simple local edge-swapping with mesh deformation by means of the elastic analogy. To deal with mesh topology changes an extension of the classical Arbitary Lagr...

متن کامل

Enhanced remeshing from STL files with applications to surface grid generation

In this paper, we present a robust and efficient technique for surface meshing based on Stereolithography (STL) surface definition. Ridges are correctly identified using checks on dihedral angle and comparisons of the ratio of triangle edge lengths. Robust edge swapping, splitting and contraction are performed with stringent element validity checks. The improved remeshing technique is applied d...

متن کامل

Tetrahedral Mesh Improvement Using Swapping and Smoothing

Automatic mesh generation and adaptive reenement methods for complex three-dimensional domains have proven to be very successful tools for the eecient solution of complex applications problems. These methods can, however, produce poorly shaped elements that cause the numerical solution to be less accurate and more diicult to compute. Fortunately, the shape of the elements can be improved throug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012